Виртуальные частицы - definizione. Che cos'è Виртуальные частицы
Diclib.com
Dizionario ChatGPT
Inserisci una parola o una frase in qualsiasi lingua 👆
Lingua:

Traduzione e analisi delle parole tramite l'intelligenza artificiale ChatGPT

In questa pagina puoi ottenere un'analisi dettagliata di una parola o frase, prodotta utilizzando la migliore tecnologia di intelligenza artificiale fino ad oggi:

  • come viene usata la parola
  • frequenza di utilizzo
  • è usato più spesso nel discorso orale o scritto
  • opzioni di traduzione delle parole
  • esempi di utilizzo (varie frasi con traduzione)
  • etimologia

Cosa (chi) è Виртуальные частицы - definizione

ОБЪЕКТ, КОТОРЫЙ ХАРАКТЕРИЗУЕТСЯ ПОЧТИ ВСЕМИ КВАНТОВЫМИ ЧИСЛАМИ
Виртуальные частицы; Массовая поверхность; Массовая оболочка; Вакуумные флуктуации; Виртуальный процесс

Виртуальные частицы         

частицы, существующие в промежуточных, имеющих малую длительность состояниях, для которых не выполняется обычное соотношение между энергией, импульсом и массой. Другие характеристики В. ч. - электрический заряд, Спин, Барионный заряд и т.д. - такие же, как у соответствующих реальных частиц.

Понятие В. ч. и виртуальных процессов занимает центральное место в современной квантовой теории поля (См. Квантовая теория поля). В этой теории взаимодействие частиц и их взаимные превращения рассматриваются как рождение или поглощение одной свободной частицей других (виртуальных) частиц. Любая частица непрерывно испускает и поглощает В. ч. различных типов. Например, протон испускает и поглощает виртуальные Пи-мезоны (наряду с другими В. ч.) и благодаря этому оказывается окружённым облаком В. ч., число которых, вообще говоря, неопределённо.

С точки зрения классической физики, свободная частица (частица, на которую не действуют внешние силы, т. е. покоящаяся или движущаяся равномерно и прямолинейно) не может ни породить, ни поглотить другую частицу (например, свободный электрон не может ни испустить, ни поглотить фотон), так как в таких процессах нарушался бы либо закон сохранения энергии, либо закон сохранения импульса. Действительно, покоящийся электрон имеет минимальную возможную энергию (энергию покоя, равную, согласно теории относительности, m0с2, где m0 - масса покоя электрона, с - скорость света). Поэтому такой электрон не может испустить фотон, всегда обладающий энергией: при этом нарушался бы закон сохранения энергии. Если электрон движется с постоянной скоростью, он также не может (за счёт своей кинетической энергии) породить фотон, так как в таком процессе нарушался бы закон сохранения импульса: потеря импульса электроном, связанная с потерей энергии на рождение фотона, была бы большей импульса фотона, соответствующего его энергии (из-за различия масс этих частиц). То же относится и к процессу поглощения фотона свободным электроном.

Иная ситуация в квантовой механике (См. Квантовая механика). Согласно фундаментальному принципу квантовой механики - принципу неопределённости (см. Неопределённостей соотношение), у любой частицы, "живущей" малый интервал времени ∆t, энергия не является точно фиксированной. Разброс возможных значений энергии ∆E удовлетворяет неравенству ∆Eћ/∆t где ћ - постоянная Планка, делённая на 2π. Аналогично, частица, существующая лишь в области размером ∆x, имеет разброс импульса ∆рx порядка ∆pxћ/∆x Энергия и импульс непрерывно флуктуируют, и в течение малых промежутков времени может "временно нарушаться" (в классическом смысле) закон сохранения энергии, а процессы, протекающие внутри малых объёмов, могут сопровождаться "местными нарушениями" закона сохранения импульса.

Именно вследствие принципа неопределённости возможно испускание и поглощение свободным электроном виртуального фотона и другие аналогичные процессы; нужно лишь, чтобы весь процесс испускания и поглощения длился достаточно малое время, так, чтобы связанное с ним "нарушение" закона сохранения энергии укладывалось в рамки соотношения неопределённостей. Законы сохранения электрического заряда и некоторых других характеристик микрочастиц (барионного заряда, лептонного заряда (См. Лептонный заряд)) при таких виртуальных процессах строго выполняются.

Эти факты можно истолковать и иначе. Именно, считать, что энергия сохраняется и в процессах, длящихся сколь угодно малое время, необычная связь кинетической энергии частицы с её импульсом и массой, E = р2/2m0, нарушается; при больших скоростях нарушается соответствующее релятивистское соотношение (см. Относительности теория), E2 = c2p2 + с4m20. Обе точки зрения но существу равноценны. Однако при развитии математического аппарата квантовой теории поля вторая точка зрения предпочтительнее.

Взаимодействие обычных, реальных частиц в подавляющем большинстве случаев происходит путём испускания и поглощения (обмена) В. ч. Энергия и импульс реальных частиц до и после реакции остаются неизменными, а во время реакции законы сохранения этих величин не выполняются. Вся теория строится так, что любая реакция может быть представлена как результат различных виртуальных процессов, протекающих за малое время реакции.

Кроме обмена В. ч., в теории большую роль играет процесс образования В. ч. при поглощении одной реальной частицей другой реальной же частицы. Например, комптон-эффект (См. Комптона эффект), т. е. процесс рассеяния фотона электроном, происходит главным образом за счёт следующего механизма: вначале фотон поглощается электроном с образованием виртуального электрона, а затем этот виртуальный электрон снова распадается на реальные электрон и фотон (но уже имеющие другие направления движения и энергии, т. е. рассеянные).

Хотя В. ч. отличаются от реальных тем, что для них не выполняется обычное соотношение между энергией и импульсом (из-за чего они не могут быть по отдельности зарегистрированы счётчиком элементарных частиц или другими аналогичными устройствами, которые всегда являются классическими приборами), считать их несуществующими нет достаточных оснований. Физики отказались от классического непрерывного поля Фарадея - Максвелла, как от не соответствующего действительности. Поэтому, если допустить, что появление В. ч. в теории есть лишь следствие приближённых методов расчёта (существует и такая точка зрения), то неизбежен возврат к теории взаимодействия частиц друг с другом на расстоянии без какого-либо посредника. Но подобные представления теории дальнодействия давно отвергнуты наукой (см. Взаимодействие, Поля физические).

Г. Я. Мякишев.

ВИРТУАЛЬНЫЕ ЧАСТИЦЫ         
в квантовой теории поля (КТП) , частицы в промежуточных состояниях, существующие короткое время ?t, которое связано с их энергией E соотношением неопределенностей ?tВИРТУАЛЬНЫЕ ЧАСТИЦЫћ/E, где ћ - Планка постоянная. Согласно КТП, взаимодействие частиц осуществляется благодаря их обмену различными виртуальными частицами (напр., виртуальными фотонами при электромагнитном взаимодействии заряженных частиц, виртуальными промежуточными векторными бозонами при слабом взаимодействии).
Виртуальная частица         
Виртуа́льная части́ца — объект, который характеризуется почти всеми квантовыми числами, присущими одной из реальных элементарных частиц, но для которого нарушена свойственная последней связь между энергией и импульсом частицы. Понятие о виртуальных частицах возникло в квантовой теории поля.

Wikipedia

Виртуальная частица

Виртуа́льная части́ца — объект, который характеризуется почти всеми квантовыми числами, присущими одной из реальных элементарных частиц, но для которого нарушена свойственная последней связь между энергией и импульсом частицы. Понятие о виртуальных частицах возникло в квантовой теории поля. Такие частицы, родившись, не могут «улететь на бесконечность», они обязаны либо поглотиться какой-либо частицей, либо распасться на реальные частицы. Известные в физике фундаментальные взаимодействия протекают в форме обмена виртуальными частицами.

В квантовой теории поля понятия виртуальных частиц и виртуальных процессов занимают центральное место. Все взаимодействия частиц и их превращения в другие частицы в квантовой теории поля принято рассматривать как процессы, обязательно сопровождающиеся рождением и поглощением виртуальных частиц свободными реальными частицами. Это — крайне удобный язык для описания взаимодействия. В частности, громоздкость вычисления процессов резко снижается, если предварительно составить правила рождения, уничтожения и распространения этих виртуальных частиц (правила Фейнмана) и изобразить процесс графически, с помощью фейнмановских диаграмм.

Разделение частиц на реальные и виртуальные имеет точный смысл лишь в отсутствии сильного внешнего поля и лишено однозначности в областях пространства-времени, где внешнее поле является сильным.

Esempi dal corpus di testo per Виртуальные частицы
1. Иногда наша вселенная описывается как вакуум, который иногда возбуждается и порождает виртуальные частицы.
2. Как упоминалось выше, переносчиками этого взаимодействия являются виртуальные частицы-глюоны, которые хаотическим образом возникают и тут же исчезают в физическом пространстве-времени.
Che cos'è Вирту<font color="red">а</font>льные част<font color="red">и</font>цы - definizione